% Tools and Techniques

Using Hierarchical State Machines in LabVIEW

Developing Complex Event-Driven Applications Using Active Objects

by Stanislav Rumega

A common LabVIEW™ programming architecture is the state
machine. However, few LabVIEW developers are aware that

there is more than one kind of state machine — finite state
machines (FSMs) and hierarchical state machines (HSMs).

Typical LabVIEW programmers have little difficulty building
finite state machines — National Instruments™ even provides
templates for FSMs with LabVIEW. However, hierarchical
state machines for complex systems can be a challenge to
build from the ground up. Toward this end, I have created

the LabHSM Toolkit.

Before I present the toolkit, it is important to have some
background on the differences between “traditional” finite
state machines and hierarchical state machines.

Overview

Most systems that application programmers deal with are
event-driven. Some systems simply execute states (actions) in a
predefined order, while others may perform their action and/or
change their state as a result of internal or external events.

It’s natural, then, when implementing such systems to break
them down into subsystems that are themselves reactive. This
leads us to using active objects as the most natural basic
modules of a software application.

In addition to regular data and methods/actions of the
traditional OOP objects, active objects possess a fundamentally
different quality: they are endowed with their own thread of
execution or process (sometimes referred to as being “alive”).
Actions can be run and events can happen in an active
object even in the absence of any communication with its
environment. Thus, active objects can allow for more natural
modeling of real life objects than traditional OOP objects.

However, what can be unclear is the question of what the
internal mechanism driving active objects should be. How do
we describe and code the object’s behavior information?

Limitations of Traditional Finite State Machines

Often, complex behavior cannot easily be described by simple,

“flat” state-transition diagrams (finite state machines, or FSMs).

The FSM model works well for simple, state-driven systems,
but doesn’t scale up to larger systems. The lack of scalability in
FSM stems from two fundamental problems: the flatness of the
state model and its lack of support for concurrency.

m LTR * Volume 12, Number 3 ¢ ltrpub.com

Flat state machines do not provide the means to construct layers of
abstraction. For example, consider a car. It is definitely a complex
system, but on the highest level of abstraction, a car can be
described as either “moving” or “stopped.” On a much lower level
of abstraction, the state of the car can be described as a combination
of states of all the cylinders: whether each of them at the current
moment of time is being filled with the gas/air mixture in,
compressing it, exploding, or emptying.

The FSM model works well for simple, state-
driven systems, but doesn’t scale up to larger
systems.The lack of scalability in the FSM model
stems from two fundamental problems:
the flatness of the state model and its lack

of support for concurrency.

For some events, like “the driver has pushed the brake pedal,”
the reaction of the system (the car must stop) is the same
regardless of the states of particular cylinders, while for other
events the reaction might depend on the state of a particular
cylinder, such as “valve 3 opened.” If we need our abstraction
model to provide the adequate reactions to both kinds of
events, the flat model doesn’t leave us a choice other than
describing the car in terms of cylinder states. It means we
need to explicitly assign a reaction to “the driver has pushed
the brake pedal” event to every possible cylinder states
combination separately! This is because traditional state
machine design inflicts repetitions.

Such modeling can result in an unstructured, unrealistic, and
chaotic state diagram, and classical FSMs can easily become
unmanageable, even for moderately involved systems. The
“moving” state in this example obviously contains all the states
for all the cylinders. So, “moving” and “stopped” should not
be considered at the same of abstraction/detail level as, say,
“emptying cylinder 1.”







